NILAI SENTRAL
Nilai sentral atau nilai rata-rata juga disebut nilai tengah dari sekumpulan data statistik adalah suatu nilai dalam kumpulan atau rangkaian data yang dapat mewakili kumpulan atau rangkaian data tersebut.
Mean (rata-rata) merupakan suatu ukuran pemusatan data. Mean suatu data juga merupakan statistik karena mampu menggambarkan bahwa data tersebut berada pada kisaran mean data tersebut. Mean tidak dapat digunakan sebagai ukuran pemusatan untuk jenis data nominal dan ordinal.
Berdasarkan definisi dari mean adalah jumlah seluruh data dibagi dengan banyaknya data. Dengan kata lain jika kita memiliki N data sebagai berikut maka mean data tersebut dapat kita tuliskan sebagai berikut :
Dimana:
x = data ke n
x bar = x rata-rata = nilai rata-rata sampel
n = banyaknya data
Bisa juga Menghitung mean
a) Rumus Mean Hitung dari Data Tunggal
b) Rumus Mean Hitung Untuk Data yang Disajikan Dalam Distribusi Frekuensi
Dengan : fixi = frekuensi untuk nilai xi yang bersesuaian
xi = data ke-i
c) Rumus Mean Hitung Gabungan
2. Median
Median menentukan letak tengah data setelah data disusun menurut urutan nilainya. Bisa juga nilai tengah dari data-data yang terurut. Simbol untuk median adalah Me. Dengan median Me, maka 50% dari banyak data nilainya paling tinggi sama dengan Me, dan 50% dari banyak data nilainya paling rendah sama dengan Me. Dalam mencari median, dibedakan untuk banyak data ganjil dan banyak data genap. Untuk banyak data ganjil, setelah data disusun menurut nilainya, maka median Me adalah data yang terletak tepat di tengah. Median bisa dihitung menggunakan rumus sebagai berikut:
variansi merupakan salah satu ukuran sebaran yang paling sering digunakan dalam berbagai analisis statistika. Standar deviasi merupakan akar kuadrat positif dari variansi. Secara umum, variansi dirumuskun sabagai :
Contoh:
Dari lima kali kuiz statistika, seorang mahasiswa memperoleh nilai 82, 93, 86, 92, dan 79. Tentukan median populasi ini.
jawab: Setelah data disusun dari yang terkecil sampai terbesar, diperoleh 79 82 86 92 93
Oleh karena itu medianya adalah 86
Kada nikotin yang berasal dari sebuah contoh acak enam batang rokok cap tertentu adalah 2.3, 2.7, 2.5, 2.9, 3.1, dan 1.9 miligram. Tentukan mediannya.
jawab: Bila kadar nikotin itu diurutkan dari yang terkecil sampai terbesar, maka diperoleh 1.9 2.3 2.5 2.7 2.9 3.1
Maka mediannya adalah rata-rata dari 2.5 dan 2.7, yaitu
Selain itu juga dapat dicari median dari data yang telah tersusun dalam bentuk distribusi frekuensi. Rumus yang digunakan ada dua, yaitu
Dimana :
Bak = batas kelas atas median
c = lebar kelas
s’ = selisih antara nomor frekuensi median dengan frekuensi kumulatif sampai kelas median
fM = frekuensi kelas median
Sebelum menggunakan kedua rumus di atas, terlebih dahulu harus ditentukan kelas yang menjadi kelas median. Kelas median adalah kelas yang memuat nomor frekuensi median, dan nomor frekuensi median ini ditentukan dengan membagi keseluruhan data dengan dua.
Secara singkat rumus median dapat digunakan sebagai berikut dalam perhitungan menggunakan tabel data
Keterangan :
Md : Nilai Median
L : Tepi bawah dari kelas yang mengandung median
n : Jumlah data
fc : frekuensi komulatif pada kelas sebelum kelas median
fm : frekuensi (absolut) dari kelas terdapatnya median
C : Kelas interval
3. Modus
Modus adalah nilai yang sering muncul. Jika kita tertarik pada data frekuensi, jumlah dari suatu nilai dari kumpulan data, maka kita menggunakan modus. Modus sangat baik bila digunakan untuk data yang memiliki sekala kategorik yaitu nominal atau ordinal.
Sedangkan data ordinal adalah data kategorik yang bisa diurutkan, misalnya kita menanyakan kepada 100 orang tentang kebiasaan untuk mencuci kaki sebelum tidur, dengan pilihan jawaban: selalu (5), sering (4), kadang-kadang(3), jarang (2), tidak pernah (1). Apabila kita ingin melihat ukuran pemusatannya lebih baik menggunakan modus yaitu yaitu jawaban yang paling banyak dipilih, misalnya sering (2). Berarti sebagian besar orang dari 100 orang yang ditanyakan menjawab sering mencuci kaki sebelum tidur. Inilah cara menghitung modus:
Dengan : Mo = Modus
L = Tepi bawah kelas yang memiliki frekuensi tertinggi (kelas modus) i = Interval kelas
b1 = Frekuensi kelas modus dikurangi frekuensi kelas interval terdekat sebelumnya
b2 = frekuensi kelas modus dikurangi frekuensi kelas interval terdekat sesudahnya
Contoh:
Sumbangan dari warga Bogor pada hari Palang Merah Nasional tercatat sebagai berikut: Rp 9.000, Rp 10.000, Rp 5.000, Rp 9.000, Rp 9.000, Rp 7.000, Rp 8.000, Rp 6.000, Rp 10.000, Rp 11.000. Maka modusnya, yaitu nilai yang terjadi dengan frekuensi paling tinggi, adalah Rp 9.000.
Dari dua belas pelajar sekolah lanjutan tingkat atas yang diambil secara acak dicatat berapa kali mereka menonton film selama sebulan lalu. Data yang diperoleh adalah 2, 0, 3, 1, 2, 4, 2, 5, 4, 0, 1 dan 4. Dalam kasus ini terdapat dua modu, yaitu 2 dan 4, karena 2 dan 4 terdapat dengan frekuensi tertinggi. Distribusi demikian dikatakan bimodus.
Standar Deviasi dan Varians Simpangan baku merupakan variasi sebaran data. Semakin kecil nilai sebarannya berarti variasi nilai data makin sama Jika sebarannya bernilai 0, maka nilai semua datanya adalah sama. Semakin besar nilai sebarannya berarti data semakin bervariasi.
Cara penulisan rumus fungsi standar deviasi
STDEV (number1, number2,…)
Dengan :
Number1, number2, … adalah 1-255 argumen yang sesuai dengan sampel populasi. Anda juga dapat menggunakan array tunggal atau referensi ke array, bukan argumen yang dipisahkan oleh koma.
Keterangan
a. STDEV mengasumsikan bahwa argumen adalah contoh dari populasi. Jika data anda mewakili seluruh populasi, untuk menghitung deviasi standar menggunakan STDEVP.
b. Standar deviasi dihitung menggunakan metode “n-1″ .
c. Argumen dapat berupa nomor atau nama, array, atau referensi yang mengandung angka.
d. Nilai-nilai logis dan representasi teks dari nomor yang Anda ketik langsung ke daftar argumen akan dihitung.
e. Jika argumen adalah sebuah array atau referensi, hanya nomor/angka dalam array atau referensi yang akan dihitung. Sel kosong, nilai-nilai logis, teks, atau nilai-nilai kesalahan dalam array atau referensi akan diabaikan.
f. Argumen yang kesalahan nilai atau teks yang tidak dapat diterjemahkan ke dalam nomor/angka akan menyebabkan kesalahan. g. Jika Anda ingin memasukkan nilai-nilai logis dan representasi teks angka dalam referensi sebagai bagian dari perhitungan, gunakan fungsi STDEVA.
Dalam penerapannya STDEV , perhitungan standar deviasi secara manual menggunakan rumus berikut:
Dimana:
x = data ke n
x bar = x rata-rata = nilai rata-rata sampel
n = banyaknya data
variansi merupakan salah satu ukuran sebaran yang paling sering digunakan dalam berbagai analisis statistika. Standar deviasi merupakan akar kuadrat positif dari variansi. Secara umum, variansi dirumuskun sabagai :
Jika kita memiliki n observasi yaitu X1,X2,….Xn, dan diketahui Xbar adalah rata-rata sampel yang dimiliki, maka variansi dapat dihitung sebagai :
Contoh:
Jika dimiliki data : 210, 340, 525, 450, 275
maka variansi dan standar deviasinya :
mean = (210, 340, 525, 450, 275)/5 = 360
variansi dan standar deviasi berturut-turut :
Sedangkan jika data disajikan dalam tabel distribusi frekuensi, variansi sampel dapat dihitung sebagai :
KONSEP DAN ANALISA NILAI SENTRAL
Pada dasarnya statistika ialah sebuah konsep dalam bereksperimen, menganalisa data yang bertujuan untuk mengefisiensikan waktu, tenaga dan biaya dengan memperoleh hasil yang optimal. Berdasarkan definisinya Statistika merupakan ilmu yang mempelajari bagaimana merencanakan, mengumpulkan, menganalisis, menginterpretasi, dan mempresentasikan data. Sedangkan statistik adalah data, informasi, atau hasil penerapan algoritma statistika pada suatu data. Data sendiri merupakan kumpulan fakta atau angka.
N6ìAda berbagai metode dan cara pengolahan data sesuai dengan karakteristik data. Untuk itu statistik memberikan cara-cara pengumpulan, penyusunan data menjadi bentuk yang lebih mudah untuk dianalisis sehingga dapat memberikan informasi yang jelas sebagai petunjuk di dalam pengambilan keputusan dengan metode yang sesuai dengan karakteristik data yaitu dengan adanya tendensi sentral.
Tendensi sentral digunakan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai sentral dari suatu gugus data (himpunan pengamatan). Tendensi sentral sering sekali digunakan untuk mengetahui rata-rata data (mean), nilai yang berada ditengah data (median), nilai yang sering muncul dalam data (mode) dan masih banyak lagi yang dapat dihitung dalam tendensi sentral.
Dengan tendensi sentral, analisis data dalam penelitian dapat dilakukan dengan tepat. Pemahaman dan pengetahuan mengenai tendensi sentral sangat penting sehingga pengetahuan terhadap tendensi sentral sangat penting bagi mahasiswa.
Definisi Tendensi Sentral
Setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai sentral dari suatu gugus data (himpunan pengamatan) dikenal sebagai ukuran tendensi sentral
Nilai sentral atau tendensi sentral adalah nilai dalam rangkaian data yang mewakili rangkaian data tersebut. Tendensi sentral merupakan suatu ukuran yang digunakan untuk mengetahui kumpulan data mengenai sampel atau populasi yang disajikan dalam tabel atau diagram, yang dapat mewakili sampel atau populasi. Bila ukuran tersebut diambil dari sampel disebut statistik dan jika ukuran itu diambil dari populasi disebut parameter. Tendensi sentral digunakan untuk menggambarkan sifat sekumpulan data dari suatu pengamatan. Sentral Tendensial juga bisa disebut nilai yang representatif dalam suatu kelompok observasi atau studi. Syarat-syaratnya adalah sebagai berikut:
Harus dapat mewakili rangkaian data
Perhitungannya harus didasarkan pada seluruh data
Perhitungannya harus objektif
Perhitungannya harus mudah
Dalam suatu rangkaian hanya ada 1 nilai sentral
Terdapat tiga ukuran tendensi sentral yang sering digunakan, yaitu mean (rata-rata hitung/rata-rata aritmetika), median, modus, kuartil, desi dan presentil.
Ukuran Tendensi Sentral
• Mean
Arti dari mean tidak lain adalah “angka rata-rata”. Istilah Mean akan tetap dipakai disini oleh karena sudah lazim digunakan dalam statistik. Dari segi aritmetik Mean adalah “Jumlah nilai-nilai dibagi dengan jumlah individu”. Istilah mean saja merupakan metode yang paling banyak digunakan untuk menggambarkan ukuran tendensi sentral. Mean (rata-rata) merupakan jumlah seluruh nilai data dibagi dengan seluruh kejadian atau nilai rata-rata dari beberapa buah data.
Untuk keperluan ini, dalam perhitungan ukuran-ukuran statistik akan digunakan simbol-simbol. Nilai-nilai data kuantitatif akan dinyatakan dengan x1, x2, …, xn, apabila dalam kumpulan data itu terdapat n buah nilai. Simbol n juga digunakan untuk menyatakan ukuran sampel, yakni banyaknya objek atau data yang diteliti dalam sampel. Rata-rata untuk data kuantitatif yang terdapat dalam sebuah sampel dihitung dengan jalan membagi jumlah nilai data oleh banyaknya data.
-Perhitungan Mean Data Yang Tidak Dikelompokkan (Ungrouped Data)
Penggunaan data tidak dikelompokkan maupun data yang dikelompokkan data yang dikelompokkan umumnya berkaitan dengan jumlah data yang digunakan. Jika jumlah data yang digunakan relatif sedikit, rata-rata data yang tidak di kelompokkan (ungrouped data) menjadi pilihan untuk digunakan. Sebaliknya, jika jumlah data yang digunakan relatif banyak maka penggunaan data kelompok (grouped data) banyak dipilih.
•Median
Median (nilai tengah), adalah suatu nilai yang membatasi 50% dari frekuensi distribusi sebelah atas dan 50% frekuensi distribusi sebelah bawah atau merupakan nilai tengah dari rangkaian data yang telah tersusun secara teratur. Atau sebagai ukuran letak, karena median membagi distribusi menjadi 2 bagian yang sama. Median menentukan letak data setelah data itu disusun menurut urutan nilainya.
-Perhitungan Median Data Yang Tidak Dikelompokkan (Ungrouped Data)
Langkah-langkahnya antara lain:
Urutkan data dari terkecil ke terbesar atau dari terbesar ke terkecil. Dalam pembahasan ini, urutan data selalu dimulai dari terkecil ke terbesar.
Tentukan letak median dengan formulasi ((n+1))/2
Untuk kasus jumlah data ganjil, nilai tengah dari observasi yang sudah di urutkan merupakan nilai median sementara untuk kasus jumlah data genap, nilai median merupakan rata-rata dari dua data yang berada pada letak median untuk data yang sudah diurutkan.
-Median Data Tunggal
Jika banyak data ganjil maka median setelah data disusun menurut nilainya merupakan data paling tengah.
Posisi Median = ((n+1))/2
Keterangan :
n= Jumlah data
Contoh:
Diketahui data :2, 3, 3, 4, 4, 5, 5, 6, 6, 7. Hitung median data tersebut! Posisi Median = ((n+1))/2
=((10+1))/2 =5,5
Data ke-5,5 berada diantara angka 4 dan 5 maka….
Median= 4+5/2= 4,5
-Median Data Kelompok
Keterangan :
Lm= true lower limit atau batas bawah sesungguhnya dari kelas dengan frekuensi paling tinggi (tepi bawah kelas median)
n= Jumlah Frekuensi
∑f= Frekuensi kumulatif diatas kelas median
fm= Frekuensi kelas median (frekuensi tertinggi dari kelas interval)
c= interval kelas median
-Median memiliki kelebihan dan kekurangan antara lain:
Kelebihan:
Cocok untuk data heterogen
Median digunakan bila terdapat data yang ekstrim dalam sekelompok data
Kekurangan:
Tidak mempertimbangkan semua nilai
Kurang dapat menggambarkan mean populasi
•Modus
Modus, merupakan nilai data yang memiliki frekuensi terbesar atau dengan kata lain, nilai data yang paling sering terjadi. Ukuran ini juga dalam keadaan tidak disadari sering dipakai untuk menentukan rata-rata data kualitatif. Misalnya banyak kematian di Indonesia disebakan oleh penyakit malaria, pada umumnya kecelakaan lalulintas karena kecerobohan pengemudi, maka tidak lain masing-masing merupakan modus penyebab kematian dan kecelakaan lalu lintas. Cara menentukan modus amat sangat mudah hanya dengan mengamati data yang paling sering muncul. Dalam satu rangkaian data, kadang dijumpai adanya 1 modus, 2 modus atau tidak ada modus.
Perhitungan Modus Data Yang Tidak Dikelompokkan (Ungrouped Data)
Langkah-langkahnya sebagai berikut:
Urutkan data dari terkecil ke terbesar atau dari terbesar ke terkecil
Cari modus dengan cara mencari nilai observasi yang paling banyak muncul. Bisa terjadi dalam satu kumpulan data tidak terdapat modus atau bahkan memiliki modus lebih dari satu. Untuk kasus dimana ada 2 modus dikenal dengan sebutan bimodus atau untuk yang lebih dari 3 modus dikenal dengan multimodus.
-Modus Data Tunggal
Dalam data tunggal, modus dapat dibatasi sebagai nilai variabel yang mempunyai frekuensi tertinggi dalam distribusi. Cara menentukan modus data tunggal yakni dengan mengamati data yang paling sering muncul.
Contoh modus data tunggal:
Berapakah modus dari data berikut : 1, 2, 2, 4, 4, 4, 5, 6, 7, 8, 9.
Jawab:
Modus= 4 , karena angka 4 muncul paling banyak yaitu 3 kali.
Modus Data Kelompok
Untuk data kualitatif yang telah disusun dalam tabel distribusi frekuensi (data berkelompok), modusnya dapat ditentukan dengan rumus:
Modus = Lmo+ d1/((d1+d2)) .c
dengan:
Lmo = Tepi bawah kelas modus
d1 = selisih antara frekuensi kelas modus dengan frekuensi kelas sebelum modus
d2 = selisih antara frekuensi kelas modus dengan frekuensi kelas sesudah modus
c = interval kelas modus
-Modus dibandingkan ukuran lainnya, tidak tunggal adanya. Yang berarti sekumpulan data biasanya mempunyai lebih dari sebuah modus.
Kelebihan:
Tidak peka atau tidak terpengaruh pada nilai ekstrem
Cocok untuk data homogen maupun heterogen (dapat digunakan untuk semua jenis data)
Kekurangan:
Kurang menggambarkan mean populasi
Modus bisa lebih dari satu, atau tidak ada satu pun
Teknik perhitungan ukuran ini kurang memiliki ketelitian
Jenis atau macam nilai sentral
1. Rata -rata hitung ( mean )
Mean adalah nilai rata-rata dari beberapa buah data. Nilai mean dapat ditentukan dengan membagi jumlah data dengan banyaknya data.Mean (rata-rata) merupakan suatu ukuran pemusatan data. Mean suatu data juga merupakan statistik karena mampu menggambarkan bahwa data tersebut berada pada kisaran mean data tersebut. Mean tidak dapat digunakan sebagai ukuran pemusatan untuk jenis data nominal dan ordinal.
Berdasarkan definisi dari mean adalah jumlah seluruh data dibagi dengan banyaknya data. Dengan kata lain jika kita memiliki N data sebagai berikut maka mean data tersebut dapat kita tuliskan sebagai berikut :
Dimana:
x = data ke n
x bar = x rata-rata = nilai rata-rata sampel
n = banyaknya data
Bisa juga Menghitung mean
a) Rumus Mean Hitung dari Data Tunggal
b) Rumus Mean Hitung Untuk Data yang Disajikan Dalam Distribusi Frekuensi
Dengan : fixi = frekuensi untuk nilai xi yang bersesuaian
xi = data ke-i
c) Rumus Mean Hitung Gabungan
2. Median
Median menentukan letak tengah data setelah data disusun menurut urutan nilainya. Bisa juga nilai tengah dari data-data yang terurut. Simbol untuk median adalah Me. Dengan median Me, maka 50% dari banyak data nilainya paling tinggi sama dengan Me, dan 50% dari banyak data nilainya paling rendah sama dengan Me. Dalam mencari median, dibedakan untuk banyak data ganjil dan banyak data genap. Untuk banyak data ganjil, setelah data disusun menurut nilainya, maka median Me adalah data yang terletak tepat di tengah. Median bisa dihitung menggunakan rumus sebagai berikut:
variansi merupakan salah satu ukuran sebaran yang paling sering digunakan dalam berbagai analisis statistika. Standar deviasi merupakan akar kuadrat positif dari variansi. Secara umum, variansi dirumuskun sabagai :
Contoh:
Dari lima kali kuiz statistika, seorang mahasiswa memperoleh nilai 82, 93, 86, 92, dan 79. Tentukan median populasi ini.
jawab: Setelah data disusun dari yang terkecil sampai terbesar, diperoleh 79 82 86 92 93
Oleh karena itu medianya adalah 86
Kada nikotin yang berasal dari sebuah contoh acak enam batang rokok cap tertentu adalah 2.3, 2.7, 2.5, 2.9, 3.1, dan 1.9 miligram. Tentukan mediannya.
jawab: Bila kadar nikotin itu diurutkan dari yang terkecil sampai terbesar, maka diperoleh 1.9 2.3 2.5 2.7 2.9 3.1
Maka mediannya adalah rata-rata dari 2.5 dan 2.7, yaitu
Selain itu juga dapat dicari median dari data yang telah tersusun dalam bentuk distribusi frekuensi. Rumus yang digunakan ada dua, yaitu
Dimana :
Bak = batas kelas atas median
c = lebar kelas
s’ = selisih antara nomor frekuensi median dengan frekuensi kumulatif sampai kelas median
fM = frekuensi kelas median
Sebelum menggunakan kedua rumus di atas, terlebih dahulu harus ditentukan kelas yang menjadi kelas median. Kelas median adalah kelas yang memuat nomor frekuensi median, dan nomor frekuensi median ini ditentukan dengan membagi keseluruhan data dengan dua.
Secara singkat rumus median dapat digunakan sebagai berikut dalam perhitungan menggunakan tabel data
Md : Nilai Median
L : Tepi bawah dari kelas yang mengandung median
n : Jumlah data
fc : frekuensi komulatif pada kelas sebelum kelas median
fm : frekuensi (absolut) dari kelas terdapatnya median
C : Kelas interval
3. Modus
Modus adalah nilai yang sering muncul. Jika kita tertarik pada data frekuensi, jumlah dari suatu nilai dari kumpulan data, maka kita menggunakan modus. Modus sangat baik bila digunakan untuk data yang memiliki sekala kategorik yaitu nominal atau ordinal.
Sedangkan data ordinal adalah data kategorik yang bisa diurutkan, misalnya kita menanyakan kepada 100 orang tentang kebiasaan untuk mencuci kaki sebelum tidur, dengan pilihan jawaban: selalu (5), sering (4), kadang-kadang(3), jarang (2), tidak pernah (1). Apabila kita ingin melihat ukuran pemusatannya lebih baik menggunakan modus yaitu yaitu jawaban yang paling banyak dipilih, misalnya sering (2). Berarti sebagian besar orang dari 100 orang yang ditanyakan menjawab sering mencuci kaki sebelum tidur. Inilah cara menghitung modus:
- Data yang belum dikelompokkan
Modus dari data yang belum dikelompokkan adalah ukuran yang memiliki frekuensi tertinggi. Modus dilambangkan mo. - Data yang telah dikelompokkan
Rumus Modus dari data yang telah dikelompokkan dihitung dengan rumus:
Dengan : Mo = Modus
L = Tepi bawah kelas yang memiliki frekuensi tertinggi (kelas modus) i = Interval kelas
b1 = Frekuensi kelas modus dikurangi frekuensi kelas interval terdekat sebelumnya
b2 = frekuensi kelas modus dikurangi frekuensi kelas interval terdekat sesudahnya
Contoh:
Sumbangan dari warga Bogor pada hari Palang Merah Nasional tercatat sebagai berikut: Rp 9.000, Rp 10.000, Rp 5.000, Rp 9.000, Rp 9.000, Rp 7.000, Rp 8.000, Rp 6.000, Rp 10.000, Rp 11.000. Maka modusnya, yaitu nilai yang terjadi dengan frekuensi paling tinggi, adalah Rp 9.000.
Dari dua belas pelajar sekolah lanjutan tingkat atas yang diambil secara acak dicatat berapa kali mereka menonton film selama sebulan lalu. Data yang diperoleh adalah 2, 0, 3, 1, 2, 4, 2, 5, 4, 0, 1 dan 4. Dalam kasus ini terdapat dua modu, yaitu 2 dan 4, karena 2 dan 4 terdapat dengan frekuensi tertinggi. Distribusi demikian dikatakan bimodus.
- Standar defiasi
Standar Deviasi dan Varians Simpangan baku merupakan variasi sebaran data. Semakin kecil nilai sebarannya berarti variasi nilai data makin sama Jika sebarannya bernilai 0, maka nilai semua datanya adalah sama. Semakin besar nilai sebarannya berarti data semakin bervariasi.
Cara penulisan rumus fungsi standar deviasi
STDEV (number1, number2,…)
Dengan :
Number1, number2, … adalah 1-255 argumen yang sesuai dengan sampel populasi. Anda juga dapat menggunakan array tunggal atau referensi ke array, bukan argumen yang dipisahkan oleh koma.
Keterangan
a. STDEV mengasumsikan bahwa argumen adalah contoh dari populasi. Jika data anda mewakili seluruh populasi, untuk menghitung deviasi standar menggunakan STDEVP.
b. Standar deviasi dihitung menggunakan metode “n-1″ .
c. Argumen dapat berupa nomor atau nama, array, atau referensi yang mengandung angka.
d. Nilai-nilai logis dan representasi teks dari nomor yang Anda ketik langsung ke daftar argumen akan dihitung.
e. Jika argumen adalah sebuah array atau referensi, hanya nomor/angka dalam array atau referensi yang akan dihitung. Sel kosong, nilai-nilai logis, teks, atau nilai-nilai kesalahan dalam array atau referensi akan diabaikan.
f. Argumen yang kesalahan nilai atau teks yang tidak dapat diterjemahkan ke dalam nomor/angka akan menyebabkan kesalahan. g. Jika Anda ingin memasukkan nilai-nilai logis dan representasi teks angka dalam referensi sebagai bagian dari perhitungan, gunakan fungsi STDEVA.
Dalam penerapannya STDEV , perhitungan standar deviasi secara manual menggunakan rumus berikut:
Dimana:
x = data ke n
x bar = x rata-rata = nilai rata-rata sampel
n = banyaknya data
variansi merupakan salah satu ukuran sebaran yang paling sering digunakan dalam berbagai analisis statistika. Standar deviasi merupakan akar kuadrat positif dari variansi. Secara umum, variansi dirumuskun sabagai :
Jika kita memiliki n observasi yaitu X1,X2,….Xn, dan diketahui Xbar adalah rata-rata sampel yang dimiliki, maka variansi dapat dihitung sebagai :
Contoh:
Jika dimiliki data : 210, 340, 525, 450, 275
maka variansi dan standar deviasinya :
mean = (210, 340, 525, 450, 275)/5 = 360
variansi dan standar deviasi berturut-turut :
Sedangkan jika data disajikan dalam tabel distribusi frekuensi, variansi sampel dapat dihitung sebagai :
KONSEP DAN ANALISA NILAI SENTRAL
Pada dasarnya statistika ialah sebuah konsep dalam bereksperimen, menganalisa data yang bertujuan untuk mengefisiensikan waktu, tenaga dan biaya dengan memperoleh hasil yang optimal. Berdasarkan definisinya Statistika merupakan ilmu yang mempelajari bagaimana merencanakan, mengumpulkan, menganalisis, menginterpretasi, dan mempresentasikan data. Sedangkan statistik adalah data, informasi, atau hasil penerapan algoritma statistika pada suatu data. Data sendiri merupakan kumpulan fakta atau angka.
N6ìAda berbagai metode dan cara pengolahan data sesuai dengan karakteristik data. Untuk itu statistik memberikan cara-cara pengumpulan, penyusunan data menjadi bentuk yang lebih mudah untuk dianalisis sehingga dapat memberikan informasi yang jelas sebagai petunjuk di dalam pengambilan keputusan dengan metode yang sesuai dengan karakteristik data yaitu dengan adanya tendensi sentral.
Tendensi sentral digunakan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai sentral dari suatu gugus data (himpunan pengamatan). Tendensi sentral sering sekali digunakan untuk mengetahui rata-rata data (mean), nilai yang berada ditengah data (median), nilai yang sering muncul dalam data (mode) dan masih banyak lagi yang dapat dihitung dalam tendensi sentral.
Dengan tendensi sentral, analisis data dalam penelitian dapat dilakukan dengan tepat. Pemahaman dan pengetahuan mengenai tendensi sentral sangat penting sehingga pengetahuan terhadap tendensi sentral sangat penting bagi mahasiswa.
Definisi Tendensi Sentral
Setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai sentral dari suatu gugus data (himpunan pengamatan) dikenal sebagai ukuran tendensi sentral
Nilai sentral atau tendensi sentral adalah nilai dalam rangkaian data yang mewakili rangkaian data tersebut. Tendensi sentral merupakan suatu ukuran yang digunakan untuk mengetahui kumpulan data mengenai sampel atau populasi yang disajikan dalam tabel atau diagram, yang dapat mewakili sampel atau populasi. Bila ukuran tersebut diambil dari sampel disebut statistik dan jika ukuran itu diambil dari populasi disebut parameter. Tendensi sentral digunakan untuk menggambarkan sifat sekumpulan data dari suatu pengamatan. Sentral Tendensial juga bisa disebut nilai yang representatif dalam suatu kelompok observasi atau studi. Syarat-syaratnya adalah sebagai berikut:
Harus dapat mewakili rangkaian data
Perhitungannya harus didasarkan pada seluruh data
Perhitungannya harus objektif
Perhitungannya harus mudah
Dalam suatu rangkaian hanya ada 1 nilai sentral
Terdapat tiga ukuran tendensi sentral yang sering digunakan, yaitu mean (rata-rata hitung/rata-rata aritmetika), median, modus, kuartil, desi dan presentil.
Ukuran Tendensi Sentral
• Mean
Arti dari mean tidak lain adalah “angka rata-rata”. Istilah Mean akan tetap dipakai disini oleh karena sudah lazim digunakan dalam statistik. Dari segi aritmetik Mean adalah “Jumlah nilai-nilai dibagi dengan jumlah individu”. Istilah mean saja merupakan metode yang paling banyak digunakan untuk menggambarkan ukuran tendensi sentral. Mean (rata-rata) merupakan jumlah seluruh nilai data dibagi dengan seluruh kejadian atau nilai rata-rata dari beberapa buah data.
Untuk keperluan ini, dalam perhitungan ukuran-ukuran statistik akan digunakan simbol-simbol. Nilai-nilai data kuantitatif akan dinyatakan dengan x1, x2, …, xn, apabila dalam kumpulan data itu terdapat n buah nilai. Simbol n juga digunakan untuk menyatakan ukuran sampel, yakni banyaknya objek atau data yang diteliti dalam sampel. Rata-rata untuk data kuantitatif yang terdapat dalam sebuah sampel dihitung dengan jalan membagi jumlah nilai data oleh banyaknya data.
-Perhitungan Mean Data Yang Tidak Dikelompokkan (Ungrouped Data)
Penggunaan data tidak dikelompokkan maupun data yang dikelompokkan data yang dikelompokkan umumnya berkaitan dengan jumlah data yang digunakan. Jika jumlah data yang digunakan relatif sedikit, rata-rata data yang tidak di kelompokkan (ungrouped data) menjadi pilihan untuk digunakan. Sebaliknya, jika jumlah data yang digunakan relatif banyak maka penggunaan data kelompok (grouped data) banyak dipilih.
•Median
Median (nilai tengah), adalah suatu nilai yang membatasi 50% dari frekuensi distribusi sebelah atas dan 50% frekuensi distribusi sebelah bawah atau merupakan nilai tengah dari rangkaian data yang telah tersusun secara teratur. Atau sebagai ukuran letak, karena median membagi distribusi menjadi 2 bagian yang sama. Median menentukan letak data setelah data itu disusun menurut urutan nilainya.
-Perhitungan Median Data Yang Tidak Dikelompokkan (Ungrouped Data)
Langkah-langkahnya antara lain:
Urutkan data dari terkecil ke terbesar atau dari terbesar ke terkecil. Dalam pembahasan ini, urutan data selalu dimulai dari terkecil ke terbesar.
Tentukan letak median dengan formulasi ((n+1))/2
Untuk kasus jumlah data ganjil, nilai tengah dari observasi yang sudah di urutkan merupakan nilai median sementara untuk kasus jumlah data genap, nilai median merupakan rata-rata dari dua data yang berada pada letak median untuk data yang sudah diurutkan.
-Median Data Tunggal
Jika banyak data ganjil maka median setelah data disusun menurut nilainya merupakan data paling tengah.
Posisi Median = ((n+1))/2
Keterangan :
n= Jumlah data
Contoh:
Diketahui data :2, 3, 3, 4, 4, 5, 5, 6, 6, 7. Hitung median data tersebut! Posisi Median = ((n+1))/2
=((10+1))/2 =5,5
Data ke-5,5 berada diantara angka 4 dan 5 maka….
Median= 4+5/2= 4,5
-Median Data Kelompok
Keterangan :
Lm= true lower limit atau batas bawah sesungguhnya dari kelas dengan frekuensi paling tinggi (tepi bawah kelas median)
n= Jumlah Frekuensi
∑f= Frekuensi kumulatif diatas kelas median
fm= Frekuensi kelas median (frekuensi tertinggi dari kelas interval)
c= interval kelas median
-Median memiliki kelebihan dan kekurangan antara lain:
Kelebihan:
Cocok untuk data heterogen
Median digunakan bila terdapat data yang ekstrim dalam sekelompok data
Kekurangan:
Tidak mempertimbangkan semua nilai
Kurang dapat menggambarkan mean populasi
•Modus
Modus, merupakan nilai data yang memiliki frekuensi terbesar atau dengan kata lain, nilai data yang paling sering terjadi. Ukuran ini juga dalam keadaan tidak disadari sering dipakai untuk menentukan rata-rata data kualitatif. Misalnya banyak kematian di Indonesia disebakan oleh penyakit malaria, pada umumnya kecelakaan lalulintas karena kecerobohan pengemudi, maka tidak lain masing-masing merupakan modus penyebab kematian dan kecelakaan lalu lintas. Cara menentukan modus amat sangat mudah hanya dengan mengamati data yang paling sering muncul. Dalam satu rangkaian data, kadang dijumpai adanya 1 modus, 2 modus atau tidak ada modus.
Perhitungan Modus Data Yang Tidak Dikelompokkan (Ungrouped Data)
Langkah-langkahnya sebagai berikut:
Urutkan data dari terkecil ke terbesar atau dari terbesar ke terkecil
Cari modus dengan cara mencari nilai observasi yang paling banyak muncul. Bisa terjadi dalam satu kumpulan data tidak terdapat modus atau bahkan memiliki modus lebih dari satu. Untuk kasus dimana ada 2 modus dikenal dengan sebutan bimodus atau untuk yang lebih dari 3 modus dikenal dengan multimodus.
-Modus Data Tunggal
Dalam data tunggal, modus dapat dibatasi sebagai nilai variabel yang mempunyai frekuensi tertinggi dalam distribusi. Cara menentukan modus data tunggal yakni dengan mengamati data yang paling sering muncul.
Contoh modus data tunggal:
Berapakah modus dari data berikut : 1, 2, 2, 4, 4, 4, 5, 6, 7, 8, 9.
Jawab:
Modus= 4 , karena angka 4 muncul paling banyak yaitu 3 kali.
Modus Data Kelompok
Untuk data kualitatif yang telah disusun dalam tabel distribusi frekuensi (data berkelompok), modusnya dapat ditentukan dengan rumus:
Modus = Lmo+ d1/((d1+d2)) .c
dengan:
Lmo = Tepi bawah kelas modus
d1 = selisih antara frekuensi kelas modus dengan frekuensi kelas sebelum modus
d2 = selisih antara frekuensi kelas modus dengan frekuensi kelas sesudah modus
c = interval kelas modus
-Modus dibandingkan ukuran lainnya, tidak tunggal adanya. Yang berarti sekumpulan data biasanya mempunyai lebih dari sebuah modus.
Kelebihan:
Tidak peka atau tidak terpengaruh pada nilai ekstrem
Cocok untuk data homogen maupun heterogen (dapat digunakan untuk semua jenis data)
Kekurangan:
Kurang menggambarkan mean populasi
Modus bisa lebih dari satu, atau tidak ada satu pun
Teknik perhitungan ukuran ini kurang memiliki ketelitian
Tidak ada komentar:
Posting Komentar