ANALISIS KORELASI SEDERHANA
Analisis korelasi sederhana (Bivariate Correlation) digunakan untuk mengetahui keeratan hubungan antara dua variabel dan untuk mengetahui arah hubungan yang terjadi. Koefisien korelasi sederhana menunjukkan seberapa besar hubungan yang terjadi antara dua variabel. Dalam SPSS ada tiga metode korelasi sederhana (bivariate correlation) diantaranyaPearson Correlation, Kendall’s tau-b,dan Spearman Correlation. Pearson Correlation digunakan untuk data berskala interval atau rasio, sedangkan Kendall’s tau-b, danSpearman Correlation lebih cocok untuk data berskala ordinal.
Pada bab ini akan dibahas analisis korelasi sederhana dengan metode Pearson atau sering disebutProduct Moment Pearson. Nilai korelasi (r) berkisar antara 1 sampai -1, nilai semakin mendekati 1 atau -1 berarti hubungan antara dua variabel semakin kuat, sebaliknya nilai mendekati 0 berarti hubungan antara dua variabel semakin lemah. Nilai positif menunjukkan hubungan searah (X naik maka Y naik) dan nilai negatif menunjukkan hubungan terbalik (X naik maka Y turun).
Menurut Sugiyono (2007) pedoman untuk memberikan interpretasi koefisien korelasi sebagai berikut:
0,00 - 0,199 = sangat rendah
0,20 - 0,399 = rendah
0,40 - 0,599 = sedang
0,60 - 0,799 = kuat
0,80 - 1,000 = sangat kuat
Contoh kasus:
Seorang mahasiswa bernama Andi melakukan penelitian dengan menggunakan alat ukur skala. Andi ingin mengetahui apakah ada hubungan antara kecerdasan dengan prestasi belajar pada siswa SMU Negeri 1 Yogyakarta, dengan ini Andi membuat 2 variabel yaitu kecerdasan dan prestasi belajar. Tiap-tiap variabel dibuat beberapa butir pertanyaan dengan menggunakan skala Likert, yaitu angka 1 = Sangat tidak setuju, 2 = Tidak setuju, 3 = Setuju dan 4 = Sangat Setuju. Setelah membagikan skala kepada 12 responden didapatlah skor total item-item yaitu sebagai berikut:
Tabel. Tabulasi Data (Data Fiktif)
Subjek
|
Kecerdasan
|
Prestasi Belajar
|
1
|
33
|
58
|
2
|
32
|
52
|
3
|
21
|
48
|
4
|
34
|
49
|
5
|
34
|
52
|
6
|
35
|
57
|
7
|
32
|
55
|
8
|
21
|
50
|
9
|
21
|
48
|
10
|
35
|
54
|
11
|
36
|
56
|
12
|
21
|
47
|
Langkah-langkah pada program SPSS
Ø Masuk program SPSS
Ø Klik variable view pada SPSS data editor
Ø Pada kolom Name ketik x, kolom Name pada baris kedua ketik y.
Ø Pada kolom Decimals ganti menjadi 0 untuk variabel x dan y
Ø Pada kolom Label, untuk kolom pada baris pertama ketik Kecerdasan, untuk kolom pada baris kedua ketik Prestasi Belajar.
Ø Untuk kolom-kolom lainnya boleh dihiraukan (isian default)
Ø Buka data view pada SPSS data editor, maka didapat kolom variabel x dan y.
Ø Ketikkan data sesuai dengan variabelnya
Ø Klik Analyze - Correlate - Bivariate
Ø Klik variabel Kecerdasan dan masukkan ke kotak Variables, kemudian klik variabel Prestasi Belajar dan masukkan ke kotak yang sama (Variables).
Ø Klik OK, maka hasil output yang didapat adalah sebagai berikut:
Tabel. Hasil Analisis Korelasi Bivariate Pearson
Dari hasil analisis korelasi sederhana (r) didapat korelasi antara kecerdasan dengan prestasi belajar (r) adalah 0,766. Hal ini menunjukkan bahwa terjadi hubungan yang kuat antara kecerdasan dengan prestasi belajar. Sedangkan arah hubungan adalah positif karena nilai r positif, berarti semakin tinggi kecerdasan maka semakin meningkatkan prestasi belajar.
- Uji Signifikansi Koefisien Korelasi Sederhana (Uji t)
Uji signifikansi koefisien korelasi digunakan untuk menguji apakah hubungan yang terjadi itu berlaku untuk populasi (dapat digeneralisasi). Misalnya dari kasus di atas populasinya adalah siswa SMU Negeri 1 Yogyakarta dan sampel yang diambil dari kasus di atas adalah 12 siswa SMU Negeri 1 Yogyakarta, jadi apakah hubungan yang terjadi atau kesimpulan yang diambil dapat berlaku untuk populasi yaitu seluruh siswa SMU Negeri 1 Yogyakarta.
Langkah-langkah pengujian sebagai berikut:
1. Menentukan Hipotesis
Ho : Tidak ada hubungan secara signifikan antara kecerdasan dengan prestasi belajar
Ha : Ada hubungan secara signifikan antara kecerdasan dengan prestasi belajar
2. Menentukan tingkat signifikansi
Pengujian menggunakan uji dua sisi dengan tingkat signifikansi a = 5%. (uji dilakukan 2 sisi karena untuk mengetahui ada atau tidaknya hubungan yang signifikan, jika 1 sisi digunakan untuk mengetahui hubungan lebih kecil atau lebih besar).
Tingkat signifikansi dalam hal ini berarti kita mengambil risiko salah dalam mengambil keputusan untuk menolak hipotesa yang benar sebanyak-banyaknya 5% (signifikansi 5% atau 0,05 adalah ukuran standar yang sering digunakan dalam penelitian)
3. Kriteria Pengujian
Ho diterima jika Signifikansi > 0,05
Ho ditolak jika Signifikansi < 0,05
4. Membandingkan signifikansi
Nilai signifikansi 0,004 < 0,05, maka Ho ditolak.
5. Kesimpulan
Oleh karena nilai Signifikansi (0,004 < 0,05) maka Ho ditolak, artinya bahwa ada hubungan secara signifikan antara kecerdasan dengan prestasi belajar. Karena koefisien korelasi nilainya positif, maka berarti kecerdasan berhubungan positif dan signifikan terhadap pretasi belajar.
Pengertian dan Analisis Korelasi Sederhana dengan Rumus Pearson
Korelasi Sederhana merupakan suatu Teknik Statistik yang dipergunakan untuk mengukur kekuatan hubungan 2 variabel dan juga untuk dapat mengetahui bentuk hubungan antara 2 variabel tersebut dengan hasil yang sifatnya kuantitatif. Kekuatan hubungan antara 2 variabel yang dimaksud disini adalah apakah hubungan tersebut erat, lemah, ataupun tidak erat. Sedangkan bentuk hubungannya adalah apakah bentuk korelasinya Linear Positif ataupun Linear Negatif.
Disamping Korelasi, Diagram Tebar (Scatter Diagram) sebenarnya juga dapat mempelajari hubungan 2 variabel dengan cara menggambarkan hubungan tersebut dalam bentuk grafik. Tetapi diagram tebar hanya dapat memperkirakan kecenderungan hubungan tersebut apakah Linear Positif, Linear Negatif ataupun tidak memiliki Korelasi Linear. Kelemahan Diagram Tebar adalah tidak dapat menunjukkan secara tepat dan juga tidak dapat memberikan angka kuantitas tentang kekuatan hubungan antara 2 variabel yang dikaji tersebut.
Kekuatan Hubungan antara 2 Variabel biasanya disebut dengan Koefisien Korelasi dan dilambangkan dengan simbol “r”. Nilai Koefisian r akan selalu berada di antara -1 sampai +1.
Perlu diingat:
Koefisien Korelasi akan selalu berada di dalam Range -1 ≤ r ≤ +1
Jika ditemukan perhitungan diluar Range tersebut, berarti telah terjadi kesalahan perhitungan dan harus di koreksi terhadap perhitungan tersebut.
B. Rumus Pearson Product Moment
Koefisien Korelasi Sederhana disebut juga dengan Koefisien Korelasi Pearson karena rumus perhitungan Koefisien korelasi sederhana ini dikemukakan oleh Karl Pearson yaitu seorang ahli Matematika yang berasal dari Inggris.
Rumus yang dipergunakan untuk menghitung koefisien korelasi Sederhana adalah sebagai berikut :
r = nΣxy – (Σx) (Σy)
√{nΣx² – (Σx)²} {nΣy2 – (Σy)2}
√{nΣx² – (Σx)²} {nΣy2 – (Σy)2}
Dimana :
n = Banyaknya Pasangan data X dan Y
Σx = Total Jumlah dari Variabel X
Σy = Total Jumlah dari Variabel Y
Σx2= Kuadrat dari Total Jumlah Variabel X
Σy2= Kuadrat dari Total Jumlah Variabel Y
Σxy= Hasil Perkalian dari Total Jumlah Variabel X dan Variabel Y
C. Pola / Hubungan antara 2 Variabel
1. Korelasi Linear Positif (+1)
Perubahan salah satu Nilai variabel diikuti perubahan Nilai variabel yang lainnya secara teratur dengan arah yang sama. Jika nilai variabel X mengalami kenaikan, maka variabel Y akan ikut naik. Jika nilai variabel X mengalami penurunan, maka variabel Y akan ikut turun. Apabila Nilai Koefisien Korelasi mendekati +1 (positif Satu) berarti pasangan data variabel X dan variabel Y memiliki Korelasi Linear Positif yang kuat/erat.
2. Korelasi Linear Positif (+1)
Perubahan salah satu nilai variabel diikuti perubahan nilai variabel yang lainnya secara teratur dengan arah yang berlawanan. Jika nilai variabel X mengalami kenaikan, maka variabel Y akan turun. Jika nilai variabel X mengalami penurunan, maka nilai variabel Y akan naik. Apabila Nilai Koefisien Korelasi mendekati -1 (Negatif Satu) maka hal ini menunjukan pasangan data variabel X dan variabel Y memiliki Korelasi Linear Negatif yang kuat/erat.
3. Tidak Berkorelasi (0)
Kenaikan Nilai Variabel yang satunya kadang-kadang diikut dengan penurunan Variabel lainnya atau kadang-kadang diikuti dengan kenaikan Variabel yang lainnya. Arah hubungannya tidak teratur, kadang-kadang searah, kadang-kadang berlawanan. Apabila Nilai Koefisien Korelasi mendekati 0 (Nol) berarti pasangan data Variabel X dan Variabel Y memiliki korelasi yang sangat lemah atau berkemungkinan tidak berkorelasi.Ketiga Pola atau bentuk hubungan tersebut jika di gambarkan ke dalamScatter Diagram (Diagram tebar) adalah sebagai berikut :
Tabel tentang Pedoman umum dalam menentukan Kriteria Korelasi :
R
|
Kriteria Hubungan
|
0
|
Tidak ada Korelasi
|
0 – 0.5
|
Korelasi Lemah
|
0.5 – 0.8
|
Korelasi sedang
|
0.8 – 1
|
Korelasi Kuat / erat
|
1
|
Korelasi Sempurna
|
Contoh Kasus Analisis Korelasi Sederhana :
Seorang Engineer ingin mempelajari apakah adanya pengaruh Suhu Ruangan terhadap Jumlah Cacat yang dihasilkan dan juga ingin mengetahui keeratan serta bentuk hubungan antara dua variabel tersebut. Engineer tersebut kemudian mengambil data selama 30 hari terhadap rata-rata (mean) suhu ruangan dan Jumlah Cacat Produksi seperti dibawah ini :
Tanggal
|
Rata-rata Suhu Ruangan
|
Jumlah Cacat
|
1
|
24
|
10
|
2
|
22
|
5
|
3
|
21
|
6
|
4
|
20
|
3
|
5
|
22
|
6
|
6
|
19
|
4
|
7
|
20
|
5
|
8
|
23
|
9
|
9
|
24
|
11
|
10
|
25
|
13
|
11
|
21
|
7
|
12
|
20
|
4
|
13
|
20
|
6
|
14
|
19
|
3
|
15
|
25
|
12
|
16
|
27
|
13
|
17
|
28
|
16
|
18
|
25
|
12
|
19
|
26
|
14
|
20
|
24
|
12
|
21
|
27
|
16
|
22
|
23
|
9
|
23
|
24
|
13
|
24
|
23
|
11
|
25
|
22
|
7
|
26
|
21
|
5
|
27
|
26
|
12
|
28
|
25
|
11
|
29
|
26
|
13
|
30
|
27
|
14
|
Penyelesaian :
Pertama-tama hitunglah X², Y², XY dan totalnya seperti tabel dibawah ini :
Tanggal
|
Rata-rata Suhu Ruangan (X)
|
Jumlah Cacat (Y)
|
X2
|
Y2
|
XY
|
1
|
24
|
10
|
576
|
100
|
240
|
2
|
22
|
5
|
484
|
25
|
110
|
3
|
21
|
6
|
441
|
36
|
126
|
4
|
20
|
3
|
400
|
9
|
60
|
5
|
22
|
6
|
484
|
36
|
132
|
6
|
19
|
4
|
361
|
16
|
76
|
7
|
20
|
5
|
400
|
25
|
100
|
8
|
23
|
9
|
529
|
81
|
207
|
9
|
24
|
11
|
576
|
121
|
264
|
10
|
25
|
13
|
625
|
169
|
325
|
11
|
21
|
7
|
441
|
49
|
147
|
12
|
20
|
4
|
400
|
16
|
80
|
13
|
20
|
6
|
400
|
36
|
120
|
14
|
19
|
3
|
361
|
9
|
57
|
15
|
25
|
12
|
625
|
144
|
300
|
16
|
27
|
13
|
729
|
169
|
351
|
17
|
28
|
16
|
784
|
256
|
448
|
18
|
25
|
12
|
625
|
144
|
300
|
19
|
26
|
14
|
676
|
196
|
364
|
20
|
24
|
12
|
576
|
144
|
288
|
21
|
27
|
16
|
729
|
256
|
432
|
22
|
23
|
9
|
529
|
81
|
207
|
23
|
24
|
13
|
576
|
169
|
312
|
24
|
23
|
11
|
529
|
121
|
253
|
25
|
22
|
7
|
484
|
49
|
154
|
26
|
21
|
5
|
441
|
25
|
105
|
27
|
26
|
12
|
676
|
144
|
312
|
28
|
25
|
11
|
625
|
121
|
275
|
29
|
26
|
13
|
676
|
169
|
338
|
30
|
27
|
14
|
729
|
196
|
378
|
Total
|
699
|
282
|
16487
|
3112
|
6861
|
Kemudian hitunglah Koefisien Korelasi berdasarkan rumus korelasi dibawah ini :
r = nΣxy – (Σx) (Σy)
. √{nΣx² – (Σx)²} {nΣy2 – (Σy)2}
. √{nΣx² – (Σx)²} {nΣy2 – (Σy)2}
r = (30 . 6861) – (699) (282)
. √{30. 16487 – (699)²} {30 . 3112 – (282)2}
. √{30. 16487 – (699)²} {30 . 3112 – (282)2}
r = (205830) – (197118)
. √{494610 – 488601} {93360 – 75924}
. √{494610 – 488601} {93360 – 75924}
r = 8712
. 9118.13
. 9118.13
r = 0.955
Jadi Koefisien Korelasi antara Suhu Ruangan dan Jumlah Cacat Produksi adalah 0.955, berarti kedua variabel tersebut memiliki hubungan yang ERAT dan bentuk hubungannya adalah Linear Positif.
Jika Hubungan Suhu Ruangan dan Jumlah Cacat Produksi dibuat dalam bentuk Scatter Diagram (Diagram Tebar), maka bentuknya akan seperti dibawah ini :
Analisis Korelasi (Correlation Analisis) juga merupakan salah satu alat (tool) yang digunakan dalam Metodologi Six Sigma di Tahap Analisis.
Tidak ada komentar:
Posting Komentar